


P R E V I O U S L Y I S S U E D N U M B E R S O F 
B R O E L & K J / E R T E C H N I C A L R E V I E W 

1—1967 FM Tape Recording. 
Vibration Measurements at the Technical University of 
Denmark. 

2—1967 Mechanical Failure Forecast by Vibration Analysis. 
Tapping Maschines for Measuring Impact Sound 
Transmission. 

3—1967 Vibration Testing — The Reasons and the Means. 
4—1967 Changing the Noise Spectrum of Pulse Jet Engines. 

On the Averaging Time of Level Recorders. 
1—1968 Peak Distribution Effects in Random Load Fatigue. 
2—1968 The Anechoic Chambers at the Technical University 

of Denmark. 
3—1968 On the Measurement and Interpretation of Cross-Power-

Spectra. 
Cross Power Spectral Density Measurements with Briiel 
& Kjaer Instruments (Part 1). 

4—1968 On the Damaging Effects of Vibration. 
Cross Spectral Density Measurements with Bruel & Kjasr 
Instruments. (Part II). 

1—1969 The Use of Digital Systems in Acoustical Measurements. 
Impulse Noise Measurements. 
Low Frequency Measurements Using Capacitive 
Transducers. 
Details in the Construction of a Piezo-electric Micro­
phone. 
A New Method in Stroboscopy. 

2—1969 The Free Field and Pressure Calibration of Condenser 
Microphones using Electrostatic Actuator. 
Long Term Stability of Condenser Microphones. 
The Free Field Calibration of a Sound Level Meter. 
Accelerometer Configurations. 
Vibration Monitoring and Warning Systems. 

3-1969 Frequency Analysis of Single Pulses. 
4—1969 Real Time Analysis. 

Field Calibration of Accelerometers. 
The Syncronization of a B&K Level Recorder Type 2305 
for Spatial Plotting. 

1-1970 Acoustic Data Collection and Evaluation with the Aid of 
a Small Computer. 
1/3 Octave Spectrum Readout of Impulse Measurements. 

2-1970 Measurement of the Complex Modulus of Elasticity of 
Fibres and Folios. 
Automatic Recording-Control System 

(Earlier editions are listed on cover page 3) 



T E C H N I C A L R E V I E W 
NO. 3 - 1970 



Contents 
On the Frequency Analysis of Mechanical Shocks and Single impulses 

By Jens T. Broch and Hans P. Oiesen 3 

Brief Communications: 
important Changes to the Telephone Transmission Measuring System . . . . 23 

News from the Factory 27 

Correction to the Article: 
'Measurement of the Complex Modulus of Elasticity of Fibres and Folios" 
B & K Techn. Rev. No. 2-1970 28 



On the Frequency Analysis of Mechanical 
Shocks and Single Impulses*) 

by 
Jens T. Broch 

and 
Hans P. Olesen 

ABSTRACT 
The article points out that frequency domain descriptions (Fourier Spectra) of shocks or 
impulses are superior to t ime domain descriptions for the estimation of the responses of 
mechanical systems to shock loading. 
The theory for filter-response to impulses is outlined and it is shown that, provided that 
the filter bandwidth is narrow compared to one divided by the impulse duration, the peak 
response of a filter to an impulse is proportional to the filter bandwidth and to the Fourier 
Spectrum value at the filter centre frequency. It is also shown that the squared and 
integrated value of the filter output is proportional to the bandwidth and to the squared 
Fourier Spectrum value. 
The theoretical results have been verified by practical measurements. 
Another method of obtaining the Fourier Spectrum, i.e. by repeating the impulse to obtain 
a periodic signal for line spectrum measurements, is briefly outlined and a comparison is 
made between the measureable values of the different methods. 

SOMMAIRE 
L'article souligne que I'analyse frequentielle (Spectre de Fourier) des chocs et impulsions 
est mieux adaptee que I'analyse temporelie pour ('estimation de la reponse des systemes 
mecaniques soumis a un choc. 
La theorie de la reponse impulsionelle des filtres est esquissee, et, sous la condit ion que 
la bande passante du filtre soit faibie comparee a ('inverse de la duree de I' impulsion, on 
montre que cette reponse est p ropo r t i oned a la bande passante et a la valeur du spectre 
de Fourier pour la frequence centrale du fi l tre. On montre aussi que la valeur carree et 
integree de la tension de sortie du fi ltre est proportionelle a la bande passante et a la 
valeur carree du spectre de Fourier, 
Les resultats theoriques ont ete verifies par des mesures experimentales. 
Une autre methode d'obtention du spectre de Fourier, repetition de I' impulsion pour obtenir 
un signal periodique et une mesure de spectre de raies, est brievement esquissee. Une 
comparaison est faite entre les valeurs mesurables pour les differentes methodes. 

ZUSAMMENFASSUNG 
!m Artikel wird zum Ausdruck gebracht, dalB fur die Abschatzung des Verhaltens mecha-
nischer Systeme bei StoBbeanspruchung Beschreibungen stoBformiger Oder impulsformiger 
Vorgange in Abhangigkeit von der Frequenz (Fourierspektren) Beschreibungen in Abhangig-
keit von der Zeit vorzuziehen sind. 
Die Theorie der Filterantwort auf Impulse wird hervorgehoben und ferner wird gezeigt, da(3 
unter der Voraussetzung, daB die Filterbandbreite gegenuber einer durch die Impulsdauer 
dividierten Bandbreite schmal ist, die Spitzenantwort eines Filters auf einen Impuls der 
Filterbandbreite und dem Fourierspektralwert bei der Filtermittenfrequenz proportional ist. 
Zusatzlich wird noch dargelegt, daB der quadrierte und integrierte Wert des Filterausganges 
der Bandbreite und dem quadrierten Fourierspektralwert proportional ist. Die theoretischen 
Ergebnisse sind durch praktische Messungen bestatigt worden. 
Ein weiteres Verfahren zur Erzielung des Fourierspektrums, namlich die Wiederholung des 

*) Paper presented at the 78th Meeting of the Acoustical Society of America, San Diego, 
California, November 1969. 
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Impulses, um ein periodisches Signal fur die Bestimmung des Linienspektrums zu erhalten, 
wird kurz behandelt, und es werden Vergleiche zwischen den nach den verschiedenen Ver-
fahren erhaltl ichen MeGgroBen angestellt. 

Introduction 
The simplest method of describing a mechanical shock or impulse is to 
obtain a graphic (or photographic) record of the pulse in the time domain, 
i.e. to obtain an amplitude versus time trace of the pulse. 
If the pulse is applied to a linear (mechanical) system, and the response of 
the system to a unit impulse (ti-impulse) is known, the response of the system 
to the pulse in question can be estimated by superposition: 

t 
X (t) - J / (T) X h (t - T) dt 

— CO 

where X (t) is the response 
where / (r) is the forcing function (impulse) 
where h (t~r) is the unit impulse response of the system 
and r is a "dummy" time variable. 

As the above integral involves the convolution of two, often very complicated 
mathematical functions, it is readily seen that an exact solution of the integral 
might pose formidable difficulties. 
In estimating the response of a system to impulse excitation other than the 
above mentioned time-domain description of the phenomena might therefore 
be more convenient. One such method of description is obtained by applying 
the Fourier Transform to the phenomena, which then allows for a description 
in the frequency domain. 
Frequency domain description have two major advantages above time domain 
descriptions: 

1. A frequency description of the exciting pulse shows what frequencies are 
important, and thus in which frequency regions dangerous resonance 
build-up in the response might occur. 

2. Response calculations in the frequency domain normally involves multi­
plication only (not convolution). 

The Fourier Transform is mathematically defined as 

oo 
A (/) = J / (t) e-faft dt 

— CO 

with the additional requirement that 

r I / (0 dt < oo 
— CO 

i.e. that f (t) is finite. 
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When f (t) is a shock or an impulse the latter requirement is automatically 
fulfilled. 
in this paper the evaluation of the Fourier transform of shocks and impulses 
in practice is discussed, and some typical measuring arrangements used for 
the evaluation are outlined. 

On the Response of " Ideal" Filters to Very Short Duration Impulses 
To simplify the theoretical treatment the case of the " ideal" filter is considered 
in the following. 

Fig. 1, Transfer function and phase shift of an "ideal" filter. 

The " ideal" filter is defined as shown in Fig. 1, and is assumed to have unity 
gain in the pass-band, and zero elsewhere. Also, it is assumed that the 
phasechange within the filter bandwidth follows the relationship (Fig. 1): 

<pf = 2 n (f - U) k 

where tL is the "transmission t ime" of the filter (not to be confused with the 
filter "r inging" time, or transient built-up). The response of such a filter to a 
unit impulse can be found by means of Fourier transform methods and is 
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(see also Appendix A): 
, sin [n Af (t ~ k)] 

F (t) = 2Af -■- cos (2 n h t) 
71 Af {t-tL) 

where Af is the filter bandwidth and f0 is its center frequency. The function, 
F (t), is plotted in Fig. 2, and the meaning of the "transmission t ime" is clearly 
noticed from the figure. Also, when fQ^> Af it can be seen from the figure 
that the maximum response (peak response) of the filter occurs when t = tu 

and is thus simply 
Fmax{t) = 2 /1 / 

Fig. 2. Response of the "ideal" filter to a unit-impulse. 

Thus, the peak response of the filter is proportional to the filter bandwidth, 
The energy, or rather the squared and integrated, response of the filter can 
be found by evaluating the integral 

oo oo 
f , „ , f [ sin [JI Af (t- L)] 2 

£ = P (t) dt = 4 Af \ —r—- cos2 (2 n h t) dt 
— OO — OO 
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As 
1 

cos2 (2 jrfot) = - [cos (4 nfat) + 1] 

oo 
, , f Sin [ j r z i / ( f - f L ) ] 12 

then E = 2Af \ — — — — c o s (4 ?r /0 0 cf/ 

— OO 

OO 

, r r s:n [a Af(t-tL)] is 
+ 2AP \ — — — dt 

J L 7iAf(t-L) ] 

One way of obtaining an estimate of these integrals is to set tL — 0, integrate 
the expression from 0 to oo and multiply the results by two, see also Fig. 2. 

From H. B. Dwight's "Tables of Integrals and Other Mathematical Data" it is 
found that integrals of the type: 

OO 

f sin2 (ax) cos (mx) 
dx 

J x2 

0 
rn are equal to zero when >̂ a ĵ > 0. The first of the two integrals above 

satisfy these conditions so that: 

OO 

A r / s\n{ji Aft) \ 2 
E = 2 X 2 Af \ —- dt 

J \ 7i Ait ) 
0 

OO 

4 f / s\n (JI Aft) \ z 

0 
This integral is of the type 

OO 

" sin2 (mx) , n 
— — dx = \m\ x -

J x2 ' 2 
0 

Thus 

E = - 7i At X - - - = 2Zl / 
7r2 2 
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Fig. 3. Illustration of characteristic quantities describing a rectangular pulse. 

If the impulse applied to the filter is no longer a unit impulse, but still very 

short compared to 1/Filter Bandwidth (i.e. 7 <€ ) then 
At 

FmM{t) =2ATAfXFQ(f) 

CO 

E = [ F2 (t) dt = 2 A2 V Af X Fo2 (0 
— OO 

where AT is the amplitude-time integral of the pulse (see also Fig. 3 and 
Appendix A), and FQ[f) is a frequency weighting function to be explained 
below. 
The above results for very short impulses show a very interesting fact, namely 
that both the peak amplitude and the squared and integrated response of 
the filter have the same relationship to filter bandwidth. Thus if the pulse 
spectrum is measured with a set of constant percentage bandwidth filters 
the measured squared and integrated value as well as the peak amplitude 
increases linearily with frequency. 
Another interesting fact, which is further discussed below, is that as long as 

the requirement (7 < -. ) is fulfilled, and the pulse spectrum is measured by 

means of constant bandwidth filters the measured result bears a simple direct 
relationship to the Fourier spectrum of the pulse. If 7 becomes of the order 
of MAt, or larger, this relationship is upset. 

Discussion of Pulse Measurements in the Frequency Domain 
It was stated in the introduction that frequency domain descriptions of single 
pulses can be obtained mathematically by means of the Fourier transform. 
Examples of such frequency domain descriptions (Fourier spectra) of pulses 
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Fig. 4. Fourier spectra for various pulses. 

with different shapes are shown in Fig. 4. Although the spectrum of the 
rectangular pulse is used in the following to demonstrate the effect of filtering, 
the principles discussed are applicable to any pulse spectrum. 
If the pulse is applied to an ideal filter with the bandwidth, Af, only frequencies 
which are inside Af will be transmitted through the filter. The effect of filtering 

is illustrated in Fig. 5 for the case when Af <€ - - (which is the same condition 

as mentioned above, 7 < - ). It is clear that what is measured at the output 
Af 

of the filter must be directly related to that part of the pulse spectrum which 
is inside Af, i.e. it must be a measure of the pulse Fourier spectrum at (and 
around) the frequency fD. 

Now the Fourier spectrum of the rectangular pulse is given mathematically 
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by the expression: 
sin (JZ f T) 

A(f) = AT \ 
nil 

By multiplying this expression by the frequency response function of the 
(ideal) filter and taking the inverse Fourier transform (see Appendix A) of the 
result the time function of the filter output can be obtained: 

F (t) =2 \ AT -■■-- X cos [2af[t-L) + 2 n U fL] df 
,' 71 f T 
0 

U + -2 -

= 2 \ AT X cos [2 n f (t - tL) + 2 n f0 fL] df 
,1 71 f T 

f - ^ 
h 2 

Fig. 5. Effect of narrow band filtering of a pulse in the frequency domain 

s in {ji fT) Af 
Assuming that the value of — changes so little in the interval fQ -■ 

7i f T 2 

to f0 + that it may be considered "constant" within this range no large 
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error is made when this factor is placed outside the integral, thus 

U + - 2 

sin In fQ T) (* 
F (t)m2AT \ cos [2 n f (f - tL) + 2 n f0 L] df 

71 f o T J 

to 2 

Actually, this assumption corresponds to the requirement for the use of very 
narrow band filters, and is graphically illustrated in Fig. 6. 

Fig. 6. Spectrum measurements. Note: At minimas (f — nil) the filter responses 
are not directly corresponding to the Fourier spectrum-curve. 

Solving the above integral gives: 

sin Info T) sin \n Af ( f - f L ) ] 
F(t)tt2AT —- — X Z l / X ■-— cos{2jif0t) 

TlfoT 7tAf{t-tL) 

Calculating now the peak response as well as the squared and integrated 
response of the filter in exactly the same way as was done previously for the 
unit impulse one obtains: 

sin in fo T) 
Fmax (t) = 2A T - X At 

n f0 T 
and 

/s in(7r / 07) \2 
E = 2A2T2[ X Af 
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Thus a good approximation of the Fourier spectrum value at f0 can be 
obtained either by measuring the peak response of the filter to the pulse 
and dividing it by two times the filter bandwidth (2/1/), or by measuring 
the squared and integrated output from the filter, dividing it by 2 Af and 
extracting the squareroot of the result. 

Considering the above it is also readily seen why measured results obtained 
with filters the bandwidth of which are of order of, or larger than 1/T (T = 
pulse duration), cannot be used to determine the Fourier spectrum of the 
pulse. Graphically two such cases are exemplified in Fig. 7. To further 
illustrate what is actually measured in the two cases shown in Fig. 7 it might 

Fig. 7. Effect of broad-band filtering. 
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be of interest to see what the corresponding time function outputs from the 
filter would look like. This is sketched in Fig. 8, and it is seen that instead 
of one (oscillating) "pulse" (cfr. Fig. 2) the filter output looks like two 
(oscillating) "pulses", one which is caused by the response of the filter to the 
"start" of the original pulse and one which is caused by its sudden ceasation. 
In other words: The filter responds, no longer to a pulse, but more or less 
to two step functions, the distance between the two steps being equal to 
the original pulse duration. 

Fig. 8. Broad-band filter-response to a pulse. 

Practical Frequency Analysis of Single Impulses 
Fig. 9a shows the result of a practical measurement obtained by filtering, 
squaring and integrating, while the theoretical Fourier spectrum for the same 
pulse is shown in Fig. 9b). The pulse duration was here 60 milliseconds and 
the bandwidth of the analyzing filter was 3,16 Hz. The practical measuring 
arrangement used to obtain the result Fig. 9a) is sketched in Fig. 10. It 
consists of an FM magnetic Tape Recorder, an electronic gating circuit, a 
Heterodyne Slave Filter with associated Amplifier and Tuning Oscillator, a 
Multiplier (Squarer) with integrating circuitry and a Level Recorder. The Tape 
Recorder is supplied with an endless loop on which the pulse to be analyzed 
is recorded, and the electronic gating circuitry ensures that the output signal 
from the Tape Recorder is zero except for a certain interval around the pulse, 
Fig. 11. If the gating circuit was not used possible extraneous noise signals 
would decrease the measuring accuracy. Actually, the gating circuit is also 
used to reset the integrator to zero after the pulse has been measured, 
resulting in a recording of the type shown in Fig. 9a). 
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Fig. 9. 
a) A practical recording of the squared and integrated filter output when a 

rectangular pulse is applied once to the filter input for each filter centre 
frequency. 

b) The theoretical Fourier spectrum for a rectangular pulse. 

Fig. 10. The measuring arrangement used to obtain the recording shown in 
Fig. 9a. 
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Fig. 11. Illustration of the effect of electronic gating. 

t 
Amplitude I I l ^ ^ ^ I 

^ IT ^ Time—>-
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Fig. 12. A puise train and its Fourier line-spectrum. 
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Allthough the above described measurement method may be the most straight­
forward method to obtain an estimate of the Fourier spectrum of a pulse, 
other methods do exist. One such method, commonly used in practice, con­
sists in transforming the pulse into a continuous pulse train, i.e. repeating 
the pulse periodically, and analyzing the pulse train in the manner normally 
used for the frequency analysis of periodic signals. In this way a so-called 
line-spectrum is obtained which consists of discrete frequency components. 
The amplitude of each component is a measure of the Fourier spectrum at 
that particular frequency, as shown in the following: 
If the period of repetition of the pulse is 7\, (Fig. 12a), then, from the theory 
of Fourier series, it is known that each component in the series is harmonically 
related to the fundamental frequency 1/7\ as shown in Fig. 12b). Fig. 12b) 
shows the Fourier spectrum of a series of rectangular pulses with a pulse 
duration 7. It is seen that when 7r > 7 a great number of discrete frequency 
components exists, and in the limit when 7r ■>- oo the Fourier spectrum of 
the single pulse may be obtained. That this is so can also be readily shown 
mathematically, and the derivation is found in any text-book on pulse analysis. 

However, as the magnitude of the various harmonics is normally found by 
means of a time-averaging process (RMS) it can also be seen from Fig. 12a) 
that when 7r becomes much larger than 7 the magnitude of the various 
frequency components becomes smaller (actually when 7r - > oo the magnitude 
of the discrete components tends towards zero). The Fourier spectrum of the 
single pulse must therefore be defined in terms of spectral density rather 
than in terms of magnitude where spectral density is defined as a magnitude 
measure per unit frequency. 
From a practical measurement point of view it is very important to choose 
the ratio TJT correctly when the method of periodic repetition of the pulse, 
and time averaging, is used. 
Considering again the Fourier spectrum of a (periodically repeated) rect­
angular pulse it is seen that the zeros in the theoretical pulse spectrum occur 
with frequency intervals of 1/7r. To be able to obtain more than one spectral 
line between successive minima the ratio 7r/7 must therefore be larger than 
two. Experiments have shown that some 5 lines between minima seem to 
give a sufficiently good resolution of the spectrum. On the other hand, the 
larger ratio TJT becomes, the smaller becomes the available dynamic range 
for the analysis. A too large ratio 7r/7 must also be avoided due to crest-
factor limitations in the measuring and analyzing equipment. As a practical 
compromise a 7r/7-ratio between 3 and 5 is recommended. 
Fig. 13 shows a practical measurement arrangement used to analyze a pulse 
which is being repeated periodically. Again the pulse was recorded on an 
FM magnetic tape recorder and the tape, containing the pulse, made into 
an endless loop. The tape loop must, however, in this case be made very 
small to achieve a sufficiently high pulse repetition frequency. 
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Fig. 13. Measuring arrangement used to analyse a periodically repeated pulse. 

In Fig. 14 the result of an actual frequency analysis of a periodically repeated 
rectangular pulse is shown. The bandwidth of the analyzing filter was 3.16 Hz, 
and the repetition frequency of the pulse was 4.2 Hz. To obtain a pulse 
repetition frequency of 4.2 Hz use was made of a Tape Recorder (B & K Type 
7001) running at a speed of 60" per second and supplied with a special loop 
adaptor which allowed the accommodation of a tape loop with a total length 
of 362 mm. It can be seen from the figure (Fig. 14) that with an analyzer 
bandwidth of 3.16 Hz the pulse repetition frequency of 4.2 Hz was just large 
enough for the individual lines in the spectrum to be resolved. It was, on the 
other hand, the highest repetition frequency which could be obtained on 
the Tape Recorder by relatively simple means. 

Fig. 14. Recording of the line-spectrum of a periodically repeated pulse as 
obtained by the measuring arrangement shown in Fig. 13. 

One problem which remains when a recording of the type shown in Fig. 14 
has been obtained is to calibrate the Y-axis of the recording in terms of the 
theoretical Fourier spectrum values. As the values actually recorded are 
RMS-values of the "harmonics" of the periodically repeated pulse, and the 
pulse Fourier spectrum is given in terms of spectral densities, then how are 
these values related to each other? 
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To solve this problem consider Fig. 15. In Fig. 15a) a repetitive signal is 
shown, and from the theory of Fourier series, it is known that the coefficients 
in the series can be found from integrals of the type: 

2 
2 (• 

Cn = \ / (?) x e-fanht dt 
' r t; 

2 

where f0 is the fundamental frequency and n X L, are harmonics of this 
frequency. As the signal shown in Fig. 15a) only contribute to the integral 

7 7 
during the period of time from - to the above equation can also be 
written: 

7 
2 

2 f 
Cn - \ f (t) X e-/2.T/7/cf dt 

' r t) 

T 
2 

Now, for a particular frequency f = n X h the Fourier transform of a single 
impulse of duration T is given by the integral (Fig. 15b): 

T_ 
CO 2 

F f) = \ f (t) X e-i^ft dt = \' f (f) X e-i^ft dt 
~ OO 7 

2 

By comparing the two expressions it is readily seen that at frequencies where 
f = n x fo then 

2 2 
Cn = ■ X F ( n X / . ) = X F (0 

/ r / r 

As Cn represents the peak value of a sinusoidal signal, and the values 
measured by means of the arrangement shown in Fig. 13 are RMS values, 
the relationship between the theoretical F (/)-value and the measured RMS-
value, CRMS, must be: 

F (/) - , CRMS f = n X fo 

The Value of the theoretical Fourier spectrum at the frequency f — n x L can 
therefore be found simply by multiplying the measured RMS-value with the 
period of repetition (in seconds) and dividing the result by squareroot two, 
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Fig. 15. A pulse train and the corresponding single pulse. 

Conclusion 
In the proceeding text various aspects of the practical frequency analysis of 
mechanical shocks and single impulses have been discussed. Allthough much 
of the theoretical material may be found in textbooks on Fourier transform 
methods it has been attempted here to give a "unif ied" picture of the major 
problems facing the engineer when he is trying to utilize the theory in practical 
measurements. 
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Appendix A 
Response of an "Ideal" Filter to a Unit Impulse 
To find the response of an " ideal" filter (Fig. 1 of the Text) to a unit impulse 
the response is first considered in the frequency domain. Use is then made 
of the inverse Fourier transform resulting in the desired time domain descrip­
tion. 

A unit impulse is defined by the integral: 
+ s 

2™ [d (t) dt - 1 

and is represented in the time domain by an infinitely high and infinitely narrow 
impulse centered around t = 0. 

Fig. A.1. A short duration rectangular pulse. 

Starting with a finite impulse, Fig. A.1, with the height A and the width 2 s 
it is seen that 

s 
J / (t) dt = 2 A 8 = Time-integral (area) of the pulse 

r* 
C 

where / (t) = A from - s to a and zero elsewhere. If f (t) should represent a 
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(5-impulse then 
s 

' i m \ f(t)dt - Mm (2AE) = 1 

Taking the Fourier transform of the impulse shown in Fig. A.1 one obtains 
the frequency spectrum of the pulse: 

OO £ 

A (f) = J f (t) X e-pxft dt = 2 A J cos (2 n f t) dt 
— oo O 

sin (2 n f e) sin (2jzfs) 
= 2A-~ — = 2 A s - — 

2jif 2utte 

To obtain the frequen cy spectrum of the unit impulse the above described 
limiting process should be applied: 

i i m / s in(2*r fe) \ 
A(f)s = £~>o 2As = 1 

fy ^ oo \ 2 71 f £ j 

Thus the frequency spectrum of the unit impulse is constant, independent of 
frequency, and equal to unity. 
Now, the frequency (or rather the transfer characteristic) of the " ideal" filter 

is unity from f0 - to fQ + and zero elsewhere. Also the phase-shift 
2 2 

in the filter is <£>f — 2 7i(f-f0) tL (see text). Mathematically formulated therefore: 

H{f) = 1 X e-h - 1 x e-i^(f-fo)t fQ - < / < f0 + 
2 2 

where H (f) is the complex frequency response of the filter. 

The frequency spectrum at the output of the filter G (/) is obtained by multi­
plying A(f) by H(f): 

G(f) = A (f) X H (f) 

and finally the time domain description of the filter can be found by applying 
the inverse Fourier transform to G (/): 

CO oo 

F (t) = J G (f) x efaft df = $A{f) X H (f) x e/2*« dt 
— oo — oo 

oo 
= 2 J Re [A (f) X H(f) X efaft] df 

6 
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u + 2 
= 2 J Re [1 X 1 X e-faV-W X e ^ t t ] ctf 

2 

= 2 [ cos [2 jr / (f - fL) + 2 7r /o fL] off 

Performing the integration one obtains: 

/ Af\ ( Af\ 
sin [2 n[ fQ + - — (f - fL) + 2 yr /o fL] sin [2 n I /0 - (f - fL) + 2 JT; /G k] 

F(t)=2 ' — ' - ■— ' — — 
|_ In {t-tL) 2jt{t-k) 

and from the well-known trigonometric relationship: 

1 1 
sin A - sin B = 2 sin (/I - B) X cos — {A + B) 

2 2 

it is found that: 

sin [^Zlf ( f - fL) ] 
F{t) ^2Af X c o s ( 2 ; / r U ) 

which is the expression given in the text. 
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Brief Communications 
The intention of this section in the B & K Technical Reviews is to cover more 
practical aspects of the use of Bruel & Kjaer instruments. It is meant to be an 
"open forum" for communication between the readers of the Review and our 
development and application laboratories. We therefore invite you to contribute 
to this communication whenever you have solved a measurement problem 
that you think may be of general interest to users of B & K equipment. The 
only restriction to contributions is that they should be as short as possible and 
preferably no longer than 3 typewritten pages (A 4). 

Important Changes to the Telephone Transmission 
Measuring System 

by 
Ronald Walford 

In 1964 the first model of the Electroacoustic Transmission Measuring System 
was released from the factory. It was given the type number 3350. Now, six 
years later, large numbers of 3350s are being used in nearly 40 countries. 

Fig. 7, The new Electroacoustic Telephone Transmission Measuring System. 
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During the six years of iis existence there has been a marked change in the 
attitude of telephone engineers towards acoustic measurements. There has 
been a quite noticeable sharpening of interest in the use of acoustics for 
designing and testing telephone systems, coupled with a demand for increased 
accuracy of measurement. Perhaps it is too soon to say that all telephone 
engineers have learnt to appreciate the value of acoustic measurements, but 
it is certain that many of them are now performing regular acoustic tests 
with an accuracy and repeatability that were almost unattainable some years 
ago. Coupled with this, encouraging progress is being made in the clarification 
of test standards so that manufacturers and administrations all over the world 
can begin to exchange measurements with some hope that they may have a 
definite practical use. 
We would like to think that the 3350 has played some part in bringing about 
this encouraging trend. We have been encouraged in this belief by the 
comments of the many users of the 3350. In particular we have noticed that 
more and more groups are beginning to build complete test standards around 
the 3350 with a consequently increased need for an extremely high level of 
performance from the equipment. 
We have decided to meet this need by introducing some important changes 
in the design of the 3350. A new model has been built, designated the 3352, 
incorporating many detailed improvements and additions to the basic 3350 
system. 
There is no change in the basic working principle, and the same general 
combination of instruments is used. But the general specification has been 
considerably tightened, the calibration method has been improved and sim­
plified, the stability of the whole equipment is now extremely high, standard 
tests have been made easier to perform, and many minor improvements have 
been made to the details of operation. 
Additionally, a completely new range of circuits has been added to meet the 
expected requirements of American usage. The calibration of the new Artificial 
Voice conforms to the recommendations of IEEE 269 and the new Test Head 
performs the conditioning motion suggested by this new standard. A new 
integrating law for the meter uses an exponent of 0.45 and a new calibrating 
technique for the whole equipment brings it into line with current American 
thought on the measurement of loudness. 
The full circuits for measurement of OREM.A and OREM.B (i.e. the two 
European standards) have been completely re-designed in solid-state form. 
A new calibrating technique considerably narrows the range of error. New 
accessories continue the process of reducing error margins and simplifying 
standard tests. 
In particular, a completely new Test Head has been produced, fitted with a 
new Artificial Voice and a range of four Artificial Ear couplers. The combina­
tion allows telephone handsets to be gripped precisely and firmly in the REF 
or AEN modal positions for measurements of OREM.A, B, C and US. For 
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OREM.C the IEC audiometric ear has been added to the equipment. 
The new Voice incorporates a built-in preamplifier for the 1/4-inch com­
pressing microphone plus a greatly-improved mechanical construction which 
allows the Voice to be positively located on the Head without the use of a 
template. 

Fig. 2. The Test Head, set to the American test position. The axis of rotation 
coincides with the principal axis of the Voice, and the Voice lipring is set to 

the AEN modal position. 

There are many other detailed changes to the main units and their accessories: 
balanced input/output circuits for the main meter; overload indicator; simplified 
back-panel controls; solid-state meter circuits with extremely accurate inte­
grating laws; a new fast-rise slow-fall meter damping; a solid-state oscillator 
with two loudness sweep ranges; the new 2113 solid-state Spectrometer; and 
the new solid-state 2305 Recorder. Full details can be found in the relevant 
Product Data sheets. 
The new 3352 will be available for delivery late in 1970. 
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Fig. 3. The top panel of the 4904 Objective Reference Equivalent Meter The 
top row of indicator lamps refers to switches on the back panel. 

r 

Fig. 4. The front panel of the Meter. The mimic diagram shows the balanced 
input/output arrangements. 
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News from the Factory 
Impedance Heads Type 8000 and Type 8001 
The two Impedance Heads are intended for mechanical impedance measure­
ments in conjunction with the Mini Shaker Type 4810. As mechanical impe­
dance is defined as force divided by velocity, the Impedance Heads, each 
consists of a force transducer and an accelerometer in a common Titanium 
housing. The driving platform of the Impedance Heads, however, is made 
of Beryium in order to achieve minimum mass below the force gauge -
it is only 1.1 gram and 1 gram for the Type 8000 and Type 8001 respectively. 
Both types have a useful frequency range from almost DC to 10 kHz, their 
low frequency performance only limited by the preamplifier used. Until 10 kHz 
the phase change between the force gauge and the accelerometer base is 
less than 1 °. 
Type 8000 is intended for the calibration of the Artificial Mastoid Type 4930. 
It permits the measurement of mechanical impedance of other soft materials. 
In the medical field this facilitates mechanical impedance measurements of 
the human body. 
Type 8001 is a general purpose device and it is very well suited for measure­
ments on structures. 
Both devices have a force sensitivity of approx. 280 mV/N and an acceleration 
sensitivity of approx. 25 mV/g. 

Type 8000 Type 8001 
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Correction to the Article: 
"Measurement of the Complex Modulus of Elasticity of Fibres and Folios" 

B & K Techn. Rev. No. 2-1970 

The deviation dF-dD which is shown in Fig. 6 is actually caused by the mathe­
matical approximation of equation VI on p. 10. 
When exact calculations are made the deviation, df-dD, is negligible even for 
large damping ratios. The curve (Fig. 6) is therefore superfluous and should be 
ignored. 
Similarly, the ?f-ax\s in Fig. 5 refers to the force-excited system only. 

B. Stisen. 

p. 

i 
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